
Structural stability

ZdeneÏ k P. BazÏ ant*

Walter P. Murphy Professor of Civil Engineering and Materials Science, Northwestern University, 2145 Sheridan Road, Evanston, IL

60208-3109, USA

Abstract

The paper attempts a broad overview of the vast ®eld of stability of structures, including elastic and anelastic

structures, static and dynamic response, linear and non-linear behavior, energy approach, thermodynamic aspects,
creep stability and fracture or damage-induced instability. The importance of stability theory to various ®elds of
engineering and applied science is pointed out and the history of the discipline is brie¯y sketched. The principal

accomplishments are succinctly reviewed, and fruitful recent trends, particularly the stability analysis of damage
localization and fracture, are emphasized. Only selected references are given. # 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Stability represents a fundamental problem in solid mechanics, which must be mastered to ensure the
safety of structures against collapse. The theory of stability is of crucial importance for structural
engineering, aerospace engineering, nuclear engineering, o�shore, ocean and arctic engineering. It plays
an important role in certain problems of space structures, geotechnical structures, geophysics and
materials science.

The importance of the subject is evident from the history of structural collapses caused by neglect or
misunderstanding of the stability aspects of design. The most famous among these is perhaps the
collapse of the Tacoma Narrows Bridge in 1940, due to aerodynamic instability, and the collapse of
Quebec Bridge over St. Lawrence in 1907, but numerous other disasters provided important lessons; e.g.
collapse of the space frame of Hartford Arena in 1978 and of the reticulated dome of Post College
Theater in the same year, the collapse of steel box girder bridge in Melbourne several years earlier, the
collapse of Ferrybridge cooling tower as well as an early history of loss of dynamic stability of aircraft
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wings, or control in rocket propulsion, instability failures of mountain slopes, open or underground
excavations, ocean oil platforms, etc.

Stability analysis in solid mechanics began with Euler's solution of buckling of an elastic column
(Euler, 1744). Most basic linear elastic problems of structural stability were solved by the end of the
19th century, although further solutions have been appearing as new structural types were being
introduced. The twentieth century has witnessed a great expansion of the stability theory into nonlinear
behavior, caused either by large de¯ections or by nonlinearity of the constitutive law of the material. In
the second half of this century, dynamic stability, important especially for non-conservative systems,
became reasonably well understood. Certain aspects, such as chaos attracted attention nevertheless only
during the last few decades, and so did the intricate nonlinear aspects of post-critical behavior in static
instabilities. The greatest emphasis is currently being placed on the analysis of instabilities and
bifurcations caused by propagation of softening damage or fracture in materials, which is important not
only from the physical and engineering viewpoint, but also from the viewpoint of computational
modeling.

Most of the subjects covered in this brief overview are expounded in detail in the book by BazÏ ant and
Cedolin (1991), which is henceforth referenced as [BC].

2. Stability of columns, frames and arches

The concept of a critical load of an elastic structure at which the equilibrium bifurcates was
introduced by Euler (1744) who also provided the solutions of critical loads of columns with various end
restraints. Experiments, however, could not verify the calculated critical loads. This fact was explained
by Young (1807), who realized that imperfections such as initial curvature, initial bending moments or
load eccentricity play an important role and derived a formula for what is known today as the
magni®cation factor for de¯ections and bending moments in columns due to axial load. Kirchho�
(1859) extended the theory to geometrically non-linear large de¯ections and provided an elegant solution
of the de¯ection curve, called the elastica, in terms of elliptic integrals. The e�ect of shear, which is
manifest in columns with a low e�ective shear sti�ness, was clari®ed by Engesser (1889) (ignorance of
his solution decades later was unfortunately the prime cause for the collapse of the Quebec Bridge in
1907, precipitated by buckling of one latticed diagonal of a truss having insu�cient shear sti�ness).

The ¯exibility method of analysis of frames was extended to critical load analysis by formulating the
dependence of the ¯exibility matrix of the column on its axial force (von Mises and Ratzersdorfer, 1926;
Chwalla, 1928), and the same was soon done for the sti�ness matrix (James, 1935; Livesley and
Chandler, 1956). The ¯exibility method, applied to the primary statically determinate structure of a
redundant frame, can also be used but can be misleading if there are many statically indeterminate
internal forces because the ¯exibility matrix of the primary structure, unlike the sti�ness matrix of the
original structure, can and typically does, lose positive de®nitiveness before the ®rst critical load.

The matrix sti�ness method in the form of ®nite elements of beams has been proven more suitable for
computer analysis and has made the calculation of the critical loads of elastic frames a routine problem.
For large regular frames, the critical loads can be obtained analytically by methods of di�erence
calculus [BC, sec. 2.9]. Even simpler analytical solutions can be obtained by approximating the regular
frame with a micropolar continuum [BC, sec. 2.10].

A considerably more di�cult problem is the buckling of slender high arches or rings. Boussinesq's
initial solution of a two-hinge arch was later corrected by Hurlbrink (1908), but a good understanding
of arbitrary statically indeterminate arches was not reached until the 1970's.
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3. Dynamic instabilities and chaos

A structure can lose stability while under accelerated motion. The treatment of dynamic instabilities
necessitates a general stability de®nition which was contributed by Liapunov (1893). Roughly, it states
that the motion of a structure is stable if any possible small change in the initial conditions can lead
only to a small change in the response. This is important for non-conservative loads, for example, those
produced by wind and generally by ¯uids or by jet propulsion. Solutions of instabilities of columns
under various idealized non-conservative loads such as the follower forces occupied mechanicians in the
middle of the century.

Dynamic instability, also called ¯utter, is an important consideration for aircraft wings, suspension
bridges, tall chimneys, guyed masts and other structures (Simiu and Scanlan, 1986). Another type of
instability, important for foundations of rotating machinery as well as bridge columns, is the parametric
resonance, engendered by the fact that the axial displacement of a column has double the frequency of
its lateral vibrations, permitting them to resonate with a load of that frequency. An idealized form of
the problem leads to Mathieu di�erential equation, which was solved approximately by Rayleigh (1894).

An important special case are conservative systems, for which a theorem due to Lagrange (1788) and
Dirichlet states that the system is stable if its potential energy is positive de®nite. This theorem makes it
possible to forgo dynamic analysis and reduce the stability problem to an investigation of the shape
(and topology) of the potential energy surface as a function of the generalized displacements of the
structure. Only limited success has been obtained in a search for functions similar to potential energy,
called Liapunov functions, which would decide the stability of non-conservative systems.

The Coriolis (gyroscopic) force, even though it does no work, was found to be the reason for stability
of shafts rotating at supercritical speeds. An interesting phenomenon is that nonconservative systems
such as rotating machinery stabilized by gyroscopic forces, ¯uid conveying pipes, aircraft wings and
structures under follower forces can be destabilized by damping (Semler et al., 1998; Crandall, 1995;
Nissim, 1965).

Recently, the problem of chaotic vibrations of strongly non-linear systems has attracted enormous
attention. In such systems, the long-time response may appear completely unpredictable but its
trajectory in the phase space exhibits a certain order, being attracted to the fractal basins (Thompson,
1982, 1989, 1986, 1986).

4. Energy methods, post-critical behavior and catastrophe theory

The Lagrange±Dirichlet theorem reduces stability analysis of conservative systems to a check of the
positive de®niteness of the tangential sti�ness matrix of the structure. As a consequence of Liapunov's
theorem, the critical loads can be determined from the sti�ness matrix of the linearized system, for
which the potential energy is quadratic.

The post-critical behavior is characterized by the higher than quadratic terms of the potential energy
as a function of generalized displacements. The basic types of post-critical behavior can be classi®ed as
stable symmetric (which is always imperfection insensitive), unstable symmetric, and asymmetric (which
are both imperfection sensitive, the latter more than the former). For all systems, the initial post-critical
behavior is described by Koiter's (1945) power laws, a celebrated result of stability theory according to
which, for every elastic structure, an imperfection causes a reduction of the maximum load proportional
to either the 2/3 or the 1/2 power of the imperfection magnitude, for all elastic systems. Moderate
reductions due to imperfections occur in some types of elastic frames, but in cylindrical shells subjected
to axial compression or bending and in spherical domes the maximum load reduction due to inevitable
imperfections is major, down to about 1/8 to 1/3 of the critical load.
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Another important type of instability of elastic systems is the snapthrough. It occurs in nonlinear
systems in which bifurcation with symmetric de¯ections does not exist, e.g., in ¯at arches or shallow
shells.

The topology of the potential energy surface near the critical load can give rise to very intricate
postcritical behavior. Similar behavior occurs in many problems of physics and other sciences. It has
recently been intensely studied in the theory of catastrophes (Thompson, 1982, 1989, 1986). A famous
result is Thom's (Thom, 1975) proof that for systems with no more than two generalized displacements
and no more than four control parameters involving the loads and imperfection magnitudes, there exist
no more than seven fundamental catastrophes, called the fold, cusp, swallowtail, butter¯y, hyperbolic
umbilic, elliptic umbilic, and parabolic umbilic.

The potential energy is also useful as the basis of approximate solutions of critical loads and
postcritical behavior. A fundamental role is played by Rayleigh's quotient (Rayleigh, 1894) whose
evaluation on the basis of an approximate de¯ection curve or surface is known to yield an upper bound
on the exact critical load. When a column or beam structure is statically determinate, a closer upper
bound is obtained from the Timoshenko quotient (Timoshenko and Gere, 1961), which is nothing but
the Rayleigh quotient for a reduced-order (second-order) di�erential equation for beam-column.
Minimizing the Rayleigh quotient calculated from the de¯ection surface expressed as a linear
combination of a complete system of chosen linearly independent functions is equivalent to the Ritz
direct variational method. The minimization approaches the critical load from above.

In view of structural safety, methods providing lower bounds would be preferable. However, this
problem is much more di�cult, and the available bounds are usually not close [BC sec. 5.8].

The potential energy expression is also useful for deriving the di�erential equation of the problem and
the boundary conditions via the calculus of variations.

5. Thin-wall beams, plates and shells

Long thin-wall beams, such as metallic cold-formed pro®les and steel or concrete girders for bridges
or buildings represent long shells which can be approximately treated by a semi-variational approach
(Kantorovich variational method), in which the basic deformation modes of the cross section are
judiciously selected so that the potential energy, as well as the corresponding di�erential equation
resulting by variational calculus, be one-dimensional. For open cross sections, the most important
deformation mode is the warping of the cross section, with the bimoment being the associated force
variable. The problem of warping torsion is amenable to simple formulas for lateral buckling and axial
torsional buckling of beam columns. For more complicated deformation modes characterizing box cross
sections, systems of ordinary di�erential equations have been solved numerically, both for linear analysis
of the critical load and for large nonlinear post-critical de¯ections.

The critical loads of elastic rectangular or circular plates are easily solved by series expansions. An
interesting point is that among the many critical loads of plates (as well as shells), the lowest one often
does not correspond to the longest wavelength of the de¯ection pro®les. Studies of postcritical behavior,
beginning with von KaÂ rmaÂ n (1910) and FoÈ ppl (1907), have shown that plates are generally not
imperfection sensitive and, in fact, possess normally a huge postcritical reserve, which is, however,
mobilized only at very large de¯ections. The limit capacity in postcritical de¯ections is reached by
plasticization of the plate, which develops ridge-shaped buckles causing the plate to act approximately
as a truss. Using such a truss analogy, simple formulas have been developed for the maximum loads of
rectangular plates (von KaÂ rmaÂ n et al., 1932), with the remarkable property that the maximum
distributed load is independent of the plate dimensions.

The theory of shell buckling has had a fascinating history with a long gestation. After the critical
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loads of pressurized spherical and axially compressed cylindrical shells were solved early in the century
(Lorenz, 1908; Timoshenko, 1910 and Southwell, 1914), experiments showed failure loads that were
about 3 to 8 times smaller. This disagreement was much debated and was not explained until von
KaÂ rmaÂ n and Tsien (1941) in their seminal paper found the explanation in highly non-linear postcritical
behavior which causes the bifurcation at critical load to be strongly asymmetric. This explanation was
later found to ®t the general postcritical theory of Koiter (1945). It further took several decades to
experimentally demonstrate that the theoretical loads of shells can indeed be closely approached
provided the imperfections are extremely small (Almroth et al., 1964; Tennyson, 1969; Tennyson and
Chan, 1990). Another reason for the extreme imperfection sensitivity of shells is that there exist many
di�erent buckling modes with critical loads so close that they interact. The calculation of failure loads
of imperfect shells is a di�cult problem, even with ®nite elements (Budiansky and Hutchinson, 1964,
1971; [BC ch. 7]). Therefore, the practice relies on an empirical correction of the critical load by an
empirical `knock-down' factor, whose values have been tabulated for many typical shell forms.

Usually the rise of the buckles on the shell surface can be considered as shallow. This is assumed in
the shallow shell theory, in which the problem of critical load of a cylindrical shell can be reduced to
one 8th order partial di�erential equation for the de¯ection (Donnell, 1934). For general shells, the
problem leads to a system of eight ®rst-order partial di�erential equations, known as the Donnell±
Mushtari±Vlasov theory. In sandwich plates and shells, interaction of global and local buckling is
important (Plantema, 1966)

6. Buckling of elasto-plastic structures

In 1889, Engesser (1889) suggested that the critical load of an inelastic column is obtained by simply
replacing the elastic modulus with the tangent modulus for loading. But in 1895 he reversed himself
(Engesser, 1895, 1899) by proposing that a certain geometry-dependent weighted average of the moduli
for loading and unloading, called the reduced modulus, should be used. This theory was later re®ned
and extended by von KaÂ rmaÂ n (1910). After blatant disagreements with measurements on aluminum
alloys were detected in aeronautical industry, Shanley (1947), in an epoch-making paper, showed that
Engesser's (Engesser, 1889) original proposal, namely the initial tangent modulus value, should be used
because the column does not buckle at constant load, but at increasing load.

Shanley's theory, which was generalized by Hill (1958), is today generally accepted for calculating the
®rst bifurcation of an elastoplastic structure. The fact that a structure must buckle at its ®rst bifurcation
load was later established by analysis of imperfections, and still later much more easily on the basis of
entropy increment calculation ([BC sec. 10.2], BazÏ ant, 1988). A salient feature of elastoplastic buckling is
that the structure is not at the stability limit at the bifurcation state and that the de¯ected post-
bifurcation states are stable.

The distinction between the critical loads of Engesser's reduced modulus theory and Shanley's tangent
modulus theory is small for materials such as mild steel, which reach a horizontal yield plateau abruptly.
However, hot-rolled steel pro®les indicated a large di�erence between the tangent modulus load and the
reduced modulus load. This fact had remained puzzling until it was discovered that the reason consists
in large thermal stresses locked in after cooling (Osgood, 1951; Yang et al., 1952), which cause that the
diagram of the axial force versus shortening of the column is smoothly curved, without a sudden
transition to a yield plateau.

Measurement of bifurcation loads further provided a surprising result with important consequences
for the theory of plastic constitutive equation. Tests of torsional buckling of cruciform columns (Gerard
and Becker, 1957), in which the critical load depends on the initial tangent modulus for shear, revealed
that Hencky's simple deformation theory, criticized in other respects, gives correct results while the
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incremental plasticity theories based on a single loading surface (e.g. von Mises or Tresca) give values
much too high (Hutchinson, 1974). Very complicated behavior is observed in reinforced concrete
columns, in which inelastic deformations are combined with tensile cracking and bond slip ([BC], Sec.
8.5; BazÏ ant and Xiang, 1997a,b).

Large plastic de¯ections of columns need to be understood for predicting the energy absorption
capability of the impact, blast, or earthquake. For very large de¯ections of very slender columns, one
can assume formation of plastic yield hinges, which greatly simpli®es the calculations. A di�cult
problem, attacked by ®nite-strain ®nite element solutions (e.g. Needleman, 1982; Tvergaard, 1982), has
been the localization of plastic strain such as necking in tensioned bars. Plastic localization instabilities
are important for the bursting of pipes and other shells due to internal pressure, for bending failure of
tubes due to ovalization of the cross section, and for postcritical reserves in plates and thin-wall girders.

7. Thermodynamic analysis of structural stability

Although stability of an inelastic structure can be decided by analyzing the e�ects of all possible
imperfections, it is much simpler and more general to use a thermodynamic approach. Since an inelastic
structure is normally far from a state of thermodynamic equilibrium at which all the dissipative
processes would come to a standstill, the use of irreversible thermodynamics would in principle be
necessary.

The classical thermodynamics, which deals only with states in®nitely close to thermodynamic
equilibrium (and is much simpler), can nevertheless be used by introducing the hypothesis of a
tangentially equivalent inelastic structure [BC, ch. 10]. The existence of such a structure is of course
tacitly implied in ®nite element programs in which the loading increments are analyzed on the basis of
tangential sti�ness. Because various combinations of loading and unloading are possible, there is
generally a number of tangentially equivalent elastic structures to consider.

Having reduced the problem to elastic structures, one can introduce the incremental internally
produced entropy of the structure-load system as well as thermodynamic potentials such as the
incremental total energy, Gibbs' or Helmholtz's free energy or enthalpy, which represent the
thermodynamic potentials under adiabatic and isothermal conditions, and with either the generalized
displacements or the associated forces as the variables. Simple thermodynamic criteria for stability of
inelastic structures in the pre-peak and post-peak de¯ections and for snapback behavior under various
types of load control, displacement control, and mixed control have been established [BC, sec. 10.1±
10.2]. Generally it appears that stability is decided by the positive de®niteness of the second variation of
these potentials, which represents the second-order work based on the tangential sti�ness matrix and is
equivalent to the negative of the entropy increment of the structure-load system.

Thermodynamic analysis makes it also possible to determine which branch is followed by the
structure after a bifurcation. To this end, one may consider a deviation from equilibrium at constant
values of independent variables and changing controls (loads), and subsequent approach at constant
controls to a new equilibrium on one or another branch of the post-bifurcation equilibrium path. The
path that is followed is that for which the second-order increment of entropy on approach to the new
equilibrium state is maximized.

The bifurcation state itself is indicated by singularity of the tangential sti�ness matrix [BC, ch. 10,
Hill, 1958, 1962; Maier et al., 1973; Petryk, 1985b; Nguyen, 1987]. The tangential sti�ness matrix that
decides the ®rst bifurcation is determined under the assumption that the tangential modulus for loading
applies at all points of the structure. When the lowest eigenvalue of this matrix becomes negative, the
bifurcation point has been passed. But the structure is not necessarily unstable, and for this reason, a
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bifurcation state can be missed in a ®nite element program if the tangential sti�ness matrix is not
calculated and checked (de Borst, 1987, 1988a,b).

More complicated behavior is encountered when phenomena such as friction or damage cause the
tangential sti�ness matrix to be non-symmetric. Singularity of that matrix decides bifurcation, however,
stability is decided strictly by the symmetric part of the sti�ness matrix, whose eigenvalue is known to
be smaller or equal to the lowest eigenvalue of the non-symmetric matrix (Bromwich theorem; [BC] Sec.
10.4).

Stability analysis of load cycles in an elasto-plastic material provides important restrictions for the
constitutive laws. It turns out that, in frictional materials, a non-associated ¯ow rule does not
necessarily cause instability. This can be analyzed on the basis of the so-called frictionally-blocked
second-order energy density [BC, sec. 10.7], which generalizes previous Mandel's (1964) example.

8. Damage localization instabilities

Localization of damage is a favored mechanism of failure of inelastic structures whose material
exhibits strain-softening damage. Such damage is described by stress-strain relations that exhibit a
postpeak descent of stress at increasing strain (BazÏ ant 1986, 1994; BazÏ ant and Chen 1997; BazÏ ant and
Planas, 1998), and in general a loss of positive de®niteness of the tangential sti�ness matrix of the
material. Stress-strain relations of this kind have been used empirically for concrete since the 1950's.
However, mechanicians who understood the implications for stability regarded all studies of strain-
softening damage for several decades with contempt until it was realized that the concept of strain
softening can be put on a sound basis by introducing a characteristic length of the material. Curiously,
the continuum damage mechanics escaped such contempt despite the absence of material length, perhaps
because its strain-softening features were hidden in a separate damage variable while the `true' stress
exhibited no strain softening. In absence of a characteristic length, the material cannot propagate waves
(loading waves, not unloading ones), the dynamic boundary value problem becomes ill-posed, and the
partial di�erential equation changes its type from hyperbolic to elliptic (Hadamard 1903). There were
intense polemics on these questions until about 1985.

Strictly mathematically, the concept of strain softening does make sense even without the material
length. Unique exact solutions to some wave propagation problems have been given [BC, sec. 13.1].
However, they exhibit physically unacceptable features. The dynamic problem is ill-posed, and as soon
as postpeak strain softening is triggered, the damage instantly localizes into a zone of measure 0 (a
point, a line, a surface, with zero volume). Thus, the structure is indicated to fail with a zero energy
dissipation.

The onset of strain softening, however, can generally be analyzed without introducing the material
length. Such analysis was pioneered by Rudnicki and Rice (1975) and Rice (1976), who solved the e�ect
of the geometrically nonlinear features of ®nite strain on localization of (nonsoftening) plastic strain into
an in®nite layer of arbitrary thickness within an in®nite body. A similar approach to the onset of
localization (or bifurcation) has later been pursued for softening materials (in which case the ®nite strain
features become unimportant if the softening is steep). The bifurcation is indicated by the singularity of
the so-called acoustic tensor of the material when the orientation of the localization layer is ®xed, or the
singularity of the tangential sti�ness tensor of the material when the orientation is arbitrary (e.g. Rizzi
et al., 1995). Localizations can also be triggered by a lack of normality of plastic ¯ow in the case of
non-associated ¯ow rule (de Borst, 1988a; Leroy and Ortiz, 1989). In the case of in®nite body, the
bifurcation condition represents also the stability limit, but for a ®nite body the thickness of the
localization layer becomes important for stability, and stability is lost later. This was shown ®rst for a
strain softening bar (BazÏ ant, 1976) and later for a layer of ®nite thickness in a ®nite body. The

Z.P. BazÏant / International Journal of Solids and Structures 37 (2000) 55±67 61



conditions for bifurcation and for the loss of stability have also been analytically formulated for
ellipsoidal localization domains, on the basis of Eshelby's theorem [BC, sec. 13.4]. Dynamic bifurcations
with localization have been shown to occur under seismic loading in concrete structures (BazÏ ant and
Jirasek, 1996)

Strain-softening constitutive relations as an approximation to distributed cracking in reinforced
concrete structures have been introduced into ®nite element analysis by Rashid (1968), Murray and
others. Such computational approaches have, however, been shown unobjective with respect to the
choice of the mesh size and geometry (exhibiting incorrect convergence on mesh re®nement) [BC, ch. 10,
BazÏ ant, 1976].

The realization that objectivity of ®nite element calculations necessitates introducing a characteristic
length of the material led ®rst to the formulation of the crack band model (BazÏ ant, 1976; BazÏ ant and
Cedolin, 1979; BazÏ ant and Oh, 1983), and then to transplanting the non-local concept from elasticity
(Eringen, 1965) into the analysis of strain-softening damage (BazÏ ant et al., 1984). The crack band
model, and to a lesser extent the non-local damage model, have undergone many re®nements (e.g.
Cervenka, 1998) and have found wide practical applications, especially in the analysis of concrete
structures and geotechnical excavations. However, the nonlocal model often requires inconveniently
small ®nite elements, and to deal with such cases ®nite elements with embedded discontinuities (either an
embedded band with strain discontinuity or an embedded line with displacement discontinuity) were
introduced (Ortiz et al., 1987; Belytschko et al., 1988; see the comparative study by JiraÂ sek, 1998). As an
approximation to the nonlocal averaging integral, which seems to have some computational advantages,
a second-gradient model for strain softening has been proposed [BC, eq. 13.10.25]. Its e�ective form
solves the nonlocal strain from the local strain from a system of separate Helmholtz partial di�erential
equation (Peerlings et al., 1996). Intricate slip localization instabilities have been found in velocity
dependent friction (Rice and Ruina, 1982)

9. Stability problems of fracture propagation

Fracture mechanics presents numerous stability problems, especially when di�erent crack tips interact.
In the case of a single crack tip, the limit of stability of crack propagation is reached when the curve of
the energy release rate at constant load versus crack length becomes tangent to the R-curve of the
material. For some fracture geometries, and for a su�ciently large structure size, crack propagation can
lead to snapback instability of the structure. In the case of the cohesive crack model, the stability limit is
given in terms of a certain integral equation over the length of the cohesive zone (BazÏ ant and Planas,
1998; BazÏ ant and Li, 1995). Simultaneous growth of many cracks typically leads to bifurcations as well
as stability loss, which can be analyzed on the basis of the tangential sti�ness matrix expressed in terms
of the partial derivatives of the stress intensity factor of each crack tip with respect to the length of
every crack in the structure.

Often it is found that, in a homogeneous body, simultaneous propagation of several crack tips does
not represent the stable path of the system. Rather, the fracture growth localizes into a single crack and
the other cracks stop growing or start unloading. An important example of such behavior are parallel
cracks caused by cooling or drying shrinkage in porous materials. The result is that when the parallel
cracks reach a certain depth, every other crack stops growing and the intermediate ones propagate
further until again every other crack stops growing, etc. In this manner, stability considerations govern
the spacing of open parallel cracks. The problem is of interest for the pavements of runways and
highways (Li et al., 1995), in geology for the interpretation of drying cracks in mud or cooling cracks in
ancient lava ¯ows, etc. [BC] Ch. 12; (Parker, 1999).
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10. Finite strain aspects of stability in three dimensions

To determine the tangential sti�ness matrix and the critical state, the potential energy must be
expressed correctly up to the quadratic terms in displacements. This means that the ®nite strain tensor
must be expressed correctly up to the second-order terms. However, there are many types of ®nite strain
measure which have di�erent second-order terms (e.g. Green's Lagragian, Biot's, Hencky's, etc.). For
each of them, the incremental equations of equilibrium, the tangential sti�ness matrix and the critical
loads are given by di�erently looking expressions. This fact has caused a long lasting confusion in the
stability theory of three-dimensional bodies. A number of di�erent theories which apparently were
giving very di�erent results were proposed by Southwell (1914), Biezeno and Hencky (1928), Tre�tz
(1933), Pearson, Hill (1958), Haringx (1942), Neuber (1943) and others.

This zoo of formulations led to controversies. It transpired, however, that all these theories are
equivalent (BazÏ ant, 1971) [BC, ch. 11] because the constitutive relations, and thus the tangential sti�ness
moduli of the material, are di�erent, with di�erent moduli values for theories associated with di�erent
quadratic components of the ®nite strain tensor. Simple relations between the tangential elastic moduli
for di�erent theories have been established. In this manner, it was for example shown that Engesser's
and Haringx's formulae for shear buckling of columns are not in contradiction but in fact identical
(although the shear modulus must of course be measured for each formula in a di�erent manner).

The aforementioned problem does not arise for beams, plates and shells without shear because in
those cases the second-order part of the ®nite strain tensor depends only on the rotations of the cross
sections, in which there is no ambiguity.

Finite strain theory is needed to solve three-dimensional internal buckling of solids, surface buckling,
buckling of thick columns and thick tubes, bulging of compressed bars, etc. The critical loads for these
buckling modes are generally of the same order of magnitude as the tangential sti�ness moduli of the
material. This means that such instabilities can occur only in materials that exhibit a high degree of
orthotropy, with a low shear sti�ness, a condition that can arise as a result of material damage
(especially oriented cracking), ®brous microstructure or latticed microstructure (e.g. built-up latticed
columns). In compressed ®ber composites, the three-dimensional instability gives rise to propagation of
kink bands, which control compression strength (Rosen, 1965; Budiansky, 1983; Budiansky et al., 1997;
Fleck, 1997; BazÏ ant et al., 1999).

11. Buckling of viscoelastic and viscoplastic structures

Time dependence of material behavior, that is viscoelasticity or viscoplasticity, may lead to
instabilities that develop not suddenly but over a long period of time. If the material is linearly
viscoelastic and is a solid, a slender structure possesses a long-time critical load, which is the load that
must be reached or surpassed for an in®nitesimal imperfection to lead to a ®nite de¯ection in in®nite
time. The long-time buckling problem may be solved by replacing the elastic moduli in the elastic
formulation by the corresponding viscoelastic operator, which may be of rate type or integral type
(Freudenthal, 1950, 1952). The long-time critical load, however, need not be important for design.
Important is the time to reach, for given imperfections, the maximum tolerable de¯ection or stress due
to buckling. This time must exceed the design life time.

When the material is viscoplastic, there exists, in contrast to viscoelastic materials, a ®nite critical time
at which the de¯ection triggered by an in®nitely small imperfection becomes ®nite (Ho�, 1958). The
critical time for viscoplastic buckling of metals controls the temperature to which various mechanical
parts of heat engines can be exposed, determine the demands for insulation of steel structures against
®re, etc. Considerable complications arise in the analysis of long-time buckling of concrete structures,
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due to chemically induced long-time aging of the material as well as distributed cracking and its gradual
spread with time [BC, ch. 9]. Long time buckling is particularly important for thin shell concrete roofs.

12. Concluding comments

Stability of elastic structures appears to be reasonably well understood at present although many
re®nements are still needed and some basic advances may still be expected. The greatest challenge and
opportunity probably lies in stability analysis of damage and fracture, and its interaction with
geometrical nonlinearity of deformation. Coupled problems, in which structural stability analysis
interfaces with chemical processes in materials, hygrothermal e�ects and various types of long-time
degradation will no doubt play an increasingly important role. So will the probabilistic treatment of
safety against the loss of stability or excessive de¯ection (Bolotin, 1969) Ð a subject that has also seen
considerable advances but lies beyond the scope of this survey.
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